Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link. https://ebooknice.com/page/post?id=faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookNice Team
Status:
Available4.5
22 reviewsThe book addresses privacy and security issues providing solutions through authentication and authorization mechanisms, blockchain, fog computing, machine learning algorithms, so that machine learning-enabled IoT devices can deliver information concealed in data for fast, computerized responses and enhanced decision-making.
The main objective of this book is to motivate healthcare providers to use telemedicine facilities for monitoring patients in urban and rural areas and gather clinical data for further research. To this end, it provides an overview of the Internet of Healthcare Things (IoHT) and discusses one of the major threats posed by it, which is the data security and data privacy of health records. Another major threat is the combination of numerous devices and protocols, precision time, data overloading, etc. In the IoHT, multiple devices are connected and communicate through certain protocols. Therefore, the application of emerging technologies to mitigate these threats and provide secure data communication over the network is discussed. This book also discusses the integration of machine learning with the IoHT for analyzing huge amounts of data for predicting diseases more accurately. Case studies are also given to verify the concepts presented in the book.
Audience
Researchers and industry engineers in computer science, artificial intelligence, healthcare sector, IT professionals, network administrators, cybersecurity experts.