Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link. https://ebooknice.com/page/post?id=faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookNice Team
Status:
Available4.9
10 reviewsABSTRACT Keywords: Ab initio molecular dynamics (AIMD) is an important technique for studying ion transport within solid elecTransformer trolyte and interface effects between electrode and electrolyte, which is particularly critical for the rational Ab initio molecular dynamics design of new energy materials. However, AIMD is limited by the high-cost density functional theory (DFT) Solid electrolyte solution process and is unable to reach the time scale of the entire dynamic simulation, resulting in timeFast-ion conductors consuming AIMD calculations and a considerable scarcity of AIMD-based conductor data. Here, we propose a Ionic conductivity sequence relational large model based on transformer (T-AIMD) to infer ion diffusion from mean square displacement sequence data and hybrid multi-source material descriptor. T-AIMD successfully learns the whole long-range atomic diffusion to predict the ionic conductivity (σ) of any ion in any crystal structure to find fast-ion conductors, thus reducing the cost of AIMD simulation by a factor of 100. Using T-AIMD, we built the largest database of mixed ion conductors, and the σ of representative solid electrolytes has been successfully validated in previous battery experiments. Further, the manufactured solid-state battery with the predicted promising electrolyte exhibits almost no obvious capacity decay after 50 cycles with a high initial specific capacity of 1270 mAh g− 1, which is promising to help devices work in extreme environments while guaranteeing battery life. By speeding up the prediction time of AIMD, the proposed T-AIMD opens the door for scientists to explore the atomic and molecular behaviors of other molecules/materials on long time scales, and will ultimately benefit the exploration of other key scientific questions in the energy field.