Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link. https://ebooknice.com/page/post?id=faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookNice Team
Status:
Available4.7
8 reviewsAcute kidney injury (AKI) is primarily caused by renal ischemia-reperfusion injury (IRI), which is one of the most prevalent triggers. Currently, preventive and therapeutic measures remain limited. Ferroptosis plays a significant role in the pathophysiological process of IRI-induced AKI and is considered a key target for improving its outcomes. Silibinin, a polyphenolic flavonoid, possesses diverse pharmacological properties and is widely used as an effective therapeutic agent for liver diseases. Recent studies have reported that silibinin may improves kidney diseases, though the underlying mechanism remain unclear. In this study, we investigated whether silibinin protects against IRI-induced AKI and explored its mechanism of action. Our findings indicated that pretreatment with silibinin alleviated renal dysfunction, pathological damage, and inflammation in IRI-AKI mice. Furthermore, the results demonstrated that silibinin inhibited ferroptosis both in vivo and in vitro. Proteome microarrays were used to identify silibinin’s target, and our results revealed that silibinin binds to FTH1. This binding affinity was confirmed through molecular docking, SPRi, CETSA, and DARTS. Additionally, co-IP assays demonstrated that silibinin disrupted the NCOA4-FTH1 interaction, inhibiting ferritinophagy. Finally, the inhibitory effects of silibinin on ferroptosis were reversed by knocking down FTH1 in vitro. In conclusion, our study shows that silibinin effectively alleviates AKI by targeting FTH1 to reduce ferroptosis, suggesting that silibinin could be developed as a potential therapeutic agent for managing and treating AKI.