Non-Self-Adjoint Schrödinger Operator with a Periodic Potential: Spectral Theories for Scalar and Vectorial Cases and Their Generalizations, 2nd by Oktay Veliev ISBN 9783031902598, 9783031902581, 3031902599, 3031902580 instant download
This book offers a comprehensive exploration of spectral theory for non-self-adjoint differential operators with complex-valued periodic coefficients, addressing one of the most challenging problems in mathematical physics and quantum mechanics: constructing spectral expansions in the absence of a general spectral theorem.
-
It examines scalar and vector Schrödinger operators, including those with PT-symmetric periodic optical potentials, and extends these methodologies to higher-order operators with periodic matrix coefficients. The second edition significantly expands upon the first by introducing two new chapters that provide a complete description of the spectral theory of non-self-adjoint differential operators with periodic coefficients.
-
The first of these new chapters focuses on the vector case, offering a detailed analysis of the spectral theory of non-self-adjoint Schrödinger operators with periodic matrix potentials. It thoroughly examines eigenvalues, eigenfunctions, and spectral expansions for systems of one-dimensional Schrödinger operators. The second chapter develops a comprehensive spectral theory for all ordinary differential operators, including higher-order and vector cases, with periodic coefficients. It also includes a complete classification of the spectrum for PT-symmetric periodic differential operators, making this edition the most comprehensive treatment of these topics to date.
-
The book begins with foundational topics, including spectral theory for Schrödinger operators with complex-valued periodic potentials, and systematically advances to specialized cases such as the Mathieu–Schrödinger operator and PT-symmetric periodic systems. By progressively increasing the complexity, it provides a unified and accessible framework for students and researchers. The approaches developed here open new horizons for spectral analysis, particularly in the context of optics, quantum mechanics, and mathematical physics.
*Free conversion of into popular formats such as PDF, DOCX, DOC, AZW, EPUB, and MOBI after payment.