logo
Product categories

EbookNice.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link.  https://ebooknice.com/page/post?id=faq


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookNice Team

(Ebook) Learning Probabilistic Graphical Models in R by David Bellot ISBN 9781784392055, 1784392057

  • SKU: EBN-5438186
Zoomable Image
$ 32 $ 40 (-20%)

Status:

Available

4.5

10 reviews
Instant download (eBook) Learning Probabilistic Graphical Models in R after payment.
Authors:David Bellot
Pages:250 pages.
Year:2016
Editon:1
Publisher:Packt Publishing
Language:english
File Size:3.39 MB
Format:pdf
ISBNS:9781784392055, 1784392057
Categories: Ebooks

Product desciption

(Ebook) Learning Probabilistic Graphical Models in R by David Bellot ISBN 9781784392055, 1784392057

Key Features
  • Predict and use a probabilistic graphical models (PGM) as an expert system
  • Comprehend how your computer can learn Bayesian modeling to solve real-world problems
  • Know how to prepare data and feed the models by using the appropriate algorithms from the appropriate R package
Book Description

Probabilistic graphical models (PGM, also known as graphical models) are a marriage between probability theory and graph theory. Generally, PGMs use a graph-based representation. Two branches of graphical representations of distributions are commonly used, namely Bayesian networks and Markov networks. R has many packages to implement graphical models.

We'll start by showing you how to transform a classical statistical model into a modern PGM and then look at how to do exact inference in graphical models. Proceeding, we'll introduce you to many modern R packages that will help you to perform inference on the models. We will then run a Bayesian linear regression and you'll see the advantage of going probabilistic when you want to do prediction.

Next, you'll master using R packages and implementing its techniques. Finally, you'll be presented with machine learning applications that have a direct impact in many fields. Here, we'll cover clustering and the discovery of hidden information in big data, as well as two important methods, PCA and ICA, to reduce the size of big problems.

What you will learn
  • Understand the concepts of PGM and which type of PGM to use for which problem
  • Tune the model's parameters and explore new models automatically
  • Understand the basic principles of Bayesian models, from simple to advanced
  • Transform the old linear regression model into a powerful probabilistic model
  • Use standard industry models but with the power of PGM
  • Understand the advanced models used throughout today's industry
  • See how to compute posterior distribution with exact and approximate inference algorithms
About the Author

David Bellot is a PhD graduate in computer science from INRIA, France, with a focus on Bayesian machine learning. He was a postdoctoral fellow at the University of California, Berkeley, and worked for companies such as Intel, Orange, and Barclays Bank. He currently works in the financial industry, where he develops financial market prediction algorithms using machine learning. He is also a contributor to open source projects such as the Boost C++ library.

Table of Contents
  1. Probabilistic Reasoning
  2. Exact Inference
  3. Learning Parameters
  4. Bayesian Modeling – Basic Models
  5. Approximate Inference
  6. Bayesian Modeling – Linear Models
  7. Probabilistic Mixture Models
  8. Appendix

*Free conversion of into popular formats such as PDF, DOCX, DOC, AZW, EPUB, and MOBI after payment.

Related Products