logo
Product categories

EbookNice.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link.  https://ebooknice.com/page/post?id=faq


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookNice Team

(Ebook) Fourier Analysis 1st Edition by Roger Ceschi, Jean Luc Gautier ISBN 9781119372233 1786301091

  • SKU: EBN-6746002
Zoomable Image
$ 32 $ 40 (-20%)

Status:

Available

0.0

0 reviews
Instant download (eBook) Fourier Analysis after payment.
Authors:Roger Ceschi, Jean-Luc Gautier
Pages:266 pages.
Year:2017
Editon:1
Publisher:Wiley ISTE
Language:english
File Size:1.49 MB
Format:pdf
ISBNS:9781119372233, 9781119388944, 9781781791790, 9781786301093, 1119372232, 1119388945, 1781791791, 1786301091
Categories: Ebooks

Product desciption

(Ebook) Fourier Analysis 1st Edition by Roger Ceschi, Jean Luc Gautier ISBN 9781119372233 1786301091

(Ebook) Fourier Analysis 1st Edition by Roger Ceschi, Jean-Luc Gautier- Ebook PDF Instant Download/Delivery: 9781119372233, 1786301091
Full download (Ebook) Fourier Analysis 1st Edition after payment

Product details: 

ISBN 10:  1786301091

ISBN 13: 9781119372233

Author: Roger Ceschi, Jean-Luc Gautier

This book aims to learn to use the basic concepts in signal processing. Each chapter is a reminder of the basic principles is presented followed by a series of corrected exercises. After resolution of these exercises, the reader can pretend to know those principles that are the basis of this theme. "We do not learn anything by word, but by example."

Table of contents: 

Chapter 1. Fourier Series  1

1.1. Theoretical background 1

1.1.1. Orthogonal functions  1

1.1.2. Fourier Series 3

1.1.3. Periodic functions  5

1.1.4. Properties of Fourier series 6

1.1.5. Discrete spectra. Power distribution 8

1.2. Exercises  9

1.2.1. Exercise 1.1. Examples of decomposition calculations  10

1.2.2. Exercise 1.2  11

1.2.3. Exercise 1.3  12

1.2.4. Exercise 1.4  12

1.2.5. Exercise 1.5  12

1.2.6. Exercise 1.6. Decomposing rectangular functions 13

1.2.7. Exercise 1.7. Translation and composition of functions  14

1.2.8. Exercise 1.8. Time derivation of a function 15

1.2.9. Exercise 1.9. Time integration of functions 15

1.2.10. Exercise 1.10  15

1.2.11. Exercise 1.11. Applications in electronic circuits 16

1.3. Solutions to the exercises  17

1.3.1. Exercise 1.1. Examples of decomposition calculations  17

1.3.2. Exercise 1.2  25

1.3.3. Exercise 1.3  26

1.3.4. Exercice 1.4  26

1.3.5. Exercise 1.5  27

1.3.6. Exercise 1.6 27

1.3.7. Exercise 1.7. Translation and composition of functions  29

1.3.8. Exercise 1.8. Time derivation of functions  31

1.3.9. Exercise 1.9. Time integration of functions  32

1.3.10. Exercise 1.10 32

1.3.11. Exercise 1.11 35

Chapter 2. Fourier Transform  39

2.1. Theoretical background  39

2.1.1. Fourier transform 39

2.1.2. Properties of the Fourier transform  42

2.1.3. Singular functions 46

2.1.4. Fourier transform of common functions  51

2.1.5. Calculating Fourier transforms using the Dirac impulse method  53

2.1.6. Fourier transform of periodic functions  54

2.1.7. Energy density 54

2.1.8. Upper limits to the Fourier transform 55

2.2. Exercises  56

2.2.1. Exercise 2.1  56

2.2.2. Exercise 2.2  57

2.2.3. Exercise 2.3  58

2.2.4. Exercise 2.4  59

2.2.5. Exercise 2.5  59

2.2.6. Exercise 2.6  59

2.2.7. Exercise 2.7  60

2.2.8. Exercise 2.8  60

2.2.9. Exercise 2.9  61

2.2.10. Exercise 2.10 62

2.2.11. Exercise 2.11 62

2.2.12. Exercise 2.12 63

2.2.13. Exercise 2.13 63

2.2.14. Exercise 2.14 64

2.2.15. Exercise 2.15 64

2.2.16. Exercise 2.16 65

2.2.17. Exercise 2.17 66

2.3. Solutions to the exercises 67

2.3.1. Exercise 2.1  67

2.3.2. Exercise 2.2  68

2.3.3. Exercise 2.3  74

2.3.4. Exercise 2.4  74

2.3.5. Exercise 2.5  76

2.3.6. Exercise 2.6  76

2.3.7. Exercise 2.7  77

2.3.8. Exercise 2.8  79

2.3.9. Exercise 2.9  82

2.3.10. Exercise 2.10  85

2.3.11 Exercise 2.11 86

2.3.12 Exercise 2.12 88

2.3.13 Exercise 2.13 91

2.3.14 Exercise 2.14 91

2.3.15 Exercice 2.15  92

2.3.16 Exercise 2.16 94

2.3.17 Exercise 2.17 95

Chapter 3. Laplace Transform 97

3.1. Theoretical background 97

3.1.1. Definition 97

3.1.2. Existence of the Laplace transform  98

3.1.3. Properties of the Laplace transform  98

3.1.4. Final value and initial value theorems  102

3.1.5. Determining reverse transforms  102

3.1.6. Approximation methods  105

3.1.7. Laplace transform and differential equations  107

3.1.8. Table of common Laplace transforms  108

3.1.9. Transient state and steady state  110

3.2. Exercise instruction  111

3.2.1. Exercise 3.1  111

3.2.2. Exercise 3.2  111

3.2.3. Exercise 3.3  112

3.2.4. Exercise 3.4  112

3.2.5. Exercise 3.5  112

3.2.6. Exercise 3.6  113

3.2.7. Exercise 3.7  113

3.2.8. Exercise 3.8  115

3.2.9. Exercise 3.9  115

3.2.10. Exercise 3.10  115

3.3. Solutions to the exercises  116

3.3.1. Exercise 3.1  116

3.3.2. Exercise 3.2  117

3.3.3. Exercise 3.3  121

3.3.4. Exercise 3.4  122

3.3.5. Exercise 3.5  130

3.3.6. Exercise 3.6  131

3.3.7. Exercise 3.7  132

3.3.8. Exercise 3.8  136

3.3.9. Exercise 3.9  138

3.3.10. Exercise 3.10 139

Chapter 4. Integrals and Convolution Product  143

4.1. Theoretical background  143

4.1.1. Analyzing linear systems using convolution integrals 143

4.1.2. Convolution properties  144

4.1.3. Graphical interpretation of the convolution product 145

4.1.4. Convolution of a function using a unit impulse 145

4.1.5. Step response from a system  147

4.1.6. Eigenfunction of a convolution operator 148

4.2. Exercises  149

4.2.1. Exercise 4.1  149

4.2.2. Exercise 4.2  150

4.2.3. Exercise 4.3  150

4.2.4. Exercise 4.4  151

4.2.5. Exercise 4.5  151

4.2.6. Exercise 4.6  152

4.3. Solutions to the exercises 153

4.3.1. Exercise 4.1  153

4.3.2. Exercise 4.2  156

4.3.3. Exercise 4.3  160

4.3.4. Exercise 4.4  163

4.3.5. Exercise 4.5  164

4.3.6. Exercise 4.6  165

Chapter 5. Correlation 169

5.1. Theoretical background  169

5.1.1. Comparing signals  169

5.1.2. Correlation function 170

5.1.3. Properties of correlation functions 172

5.1.4. Energy of a signal 176

5.2. Exercises  177

5.2.1. Exercise 5.1  177

5.2.2. Exercise 5.2  178

5.2.3. Exercise 5.3  178

5.2.4. Exercise 5.4  178

5.2.5. Exercice 5.5  179

5.2.6. Exercice 5.6  179

5.2.7. Exercise 5.7  179

5.2.8. Exercice 5.8  180

5.2.9. Exercise 5.9  180

5.2.10. Exercise 5.10  181

5.2.11. Exercise 5.11  181

5.2.12. Exercise 5.12  182

5.2.13. Exercise 5.13  182

5.2.14. Exercise 5.14  183

5.3. Solutions to the exercises  183

5.3.1. Exercise 5.1  183

5.3.2. Exercice 5.2  188

5.3.3. Exercise 5.3  191

5.3.4. Exercice 5.4  192

5.3.5. Exercise 5.5  193

5.3.6. Exercise 5.6  196

5.3.7. Exercise 5.7  197

5.3.8. Exercise 5.8  201

5.3.9. Exercise 5.9  204

5.3.10. Exercise 5.10  205

5.3.11 Exercise 5.11 206

5.3.12 Exercise 5.12 207

5.3.13 Exercise 5.13 208

5.3.14 Exercise 5.14 209

Chapter 6. Signal Sampling 213

6.1. Theoretical background 213

6.1.1. Sampling principle  213

6.1.2. Ideal sampling  214

6.1.3. Finite width sampling  218

6.1.4. Sample and hold (S/H) sampling 221

6.2. Exercises  225

6.2.1. Exercise 6.1  225

6.2.2. Exercise 6.2  225

6.2.3. Exercise 6.3  226

6.2.4. Exercise 6.4  226

6.2.5. Exercise 6.5  226

6.2.6. Exercise 5.6  227

6.2.7. Exercise 6.7  227

6.2.8. Exercice 6.8  228

6.3. Solutions to the exercises 229

6.3.1. Exercise 6.1  229

6.3.2. Exercise 6.2  229

6.3.3. Exercise 6.3  233

6.3.4. Exercice 6.4  235

6.3.5. Exercise 6.5  236

6.3.6. Exercise 6.6  238

6.3.7. Exercise 6.7  240

6.3.8. Exercise 6.8  242

Bibliography  245


People also search for:

is fourier analysis hard
    
are fourier series hard
    
what is fourier analysis used for
    
why is fourier analysis important
    
what can be inferred by doing a fourier analysis

Tags: Roger Ceschi, Jean Luc Gautier, Fourier Analysis

*Free conversion of into popular formats such as PDF, DOCX, DOC, AZW, EPUB, and MOBI after payment.

Related Products