logo
Product categories

EbookNice.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link.  https://ebooknice.com/page/post?id=faq


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookNice Team

(Ebook) Elastomer-Based Composite Materials: Mechanical, Dynamic and Microwave Properties and Engineering Applications by Nikolay Dishovsky; Mihail Mihaylov ISBN 9781315159584, 9781351659994, 9781771886208, 1315159589, 1351659995, 177188620X

  • SKU: EBN-7160094
Zoomable Image
$ 32 $ 40 (-20%)

Status:

Available

5.0

31 reviews
Instant download (eBook) Elastomer-Based Composite Materials: Mechanical, Dynamic and Microwave Properties and Engineering Applications after payment.
Authors:Nikolay Dishovsky; Mihail Mihaylov
Pages:0 pages.
Year:2018
Editon:1st
Publisher:Apple Academic Press
Language:english
File Size:50.35 MB
Format:pdf
ISBNS:9781315159584, 9781351659994, 9781771886208, 1315159589, 1351659995, 177188620X
Categories: Ebooks

Product desciption

(Ebook) Elastomer-Based Composite Materials: Mechanical, Dynamic and Microwave Properties and Engineering Applications by Nikolay Dishovsky; Mihail Mihaylov ISBN 9781315159584, 9781351659994, 9781771886208, 1315159589, 1351659995, 177188620X

"Elastomer-Based Composite Materials: Mechanical, Dynamic, and Microwave Properties and Engineering Applications is focused on elastomer-based composite materials comprising different types of reinforcing fillers. The book provides an informative examination of the possibilities for broadening the engineering applications of elastomer composites through using various types of hybrid fillers, ferrites, and ceramics, and also examines their synthesis and characterization. It discusses new hybrid fillers that have been synthesized by different techniques, e.g. impregnation of different substrates (carbon black, conductive carbon black, activated carbons, etc.) with silica or magnetite. These new fillers have been thoroughly characterized by standard techniques and by up-to-date methods, such as energy dispersive X-ray spectroscopy in scanning transmission electron microscopy (STEM-EDX), atomic absorption spectroscopy (AAS), and inductively coupled plasmaoptical emission spectroscopy (ICP-OES). The effect of those fillers upon the curing properties, mechanical and dynamic mechanical parameters, electrical conductivity, and dielectric and microwave characteristics of elastomer-based composites is discussed in detail in this volume. The book also covers the influence of various types of ceramics (SiC, B4C, and TiB2) and barium and strontium hexaferrites upon the aforementioned properties of rubber composites in conjunction with a view toward solutions for environmental problems caused by waste tires. The book shows that pyrolysis-cum-water vapor is a suitable and environmentally friendly method for the conversion of the waste green tires into useful carbon-silica hybrid fillers. The properties of elastomer-based composites comprising different types of nanostructures (fullerenes, carbon nanotubes, graphene nanoplatelets), modified activated carbons, and calcined kaolin are also discussed. Special attention is paid to composites with lower levels of zinc oxide.The volume provides an abundance of knowledge on the detailed characterization of these fillers and on the curing, mechanical, dynamic mechanical, and dielectric and microwave properties of the elastomeric composites. The book surveys the most recent research activities of the authors, which will make it a vital reference source for scientists in both the academic and industrial sectors, as well as for individuals who are interested in rubber materials. It will be very useful for students, especially PhD students, scientists, lecturers, and engineers working or doing research in the field of polymer materials science, elastomer-based composites and nanocomposites and their engineering applications in the production of microwave absorbers and electromagnetic waves shielding materials, materials for electronics devices and telecommunications."--Provided by publisher.
Abstract: "Elastomer-Based Composite Materials: Mechanical, Dynamic, and Microwave Properties and Engineering Applications is focused on elastomer-based composite materials comprising different types of reinforcing fillers. The book provides an informative examination of the possibilities for broadening the engineering applications of elastomer composites through using various types of hybrid fillers, ferrites, and ceramics, and also examines their synthesis and characterization. It discusses new hybrid fillers that have been synthesized by different techniques, e.g. impregnation of different substrates (carbon black, conductive carbon black, activated carbons, etc.) with silica or magnetite. These new fillers have been thoroughly characterized by standard techniques and by up-to-date methods, such as energy dispersive X-ray spectroscopy in scanning transmission electron microscopy (STEM-EDX), atomic absorption spectroscopy (AAS), and inductively coupled plasmaoptical emission spectroscopy (ICP-OES). The effect of those fillers upon the curing properties, mechanical and dynamic mechanical parameters, electrical conductivity, and dielectric and microwave characteristics of elastomer-based composites is discussed in detail in this volume. The book also covers the influence of various types of ceramics (SiC, B4C, and TiB2) and barium and strontium hexaferrites upon the aforementioned properties of rubber composites in conjunction with a view toward solutions for environmental problems caused by waste tires. The book shows that pyrolysis-cum-water vapor is a suitable and environmentally friendly method for the conversion of the waste green tires into useful carbon-silica hybrid fillers. The properties of elastomer-based composites comprising different types of nanostructures (fullerenes, carbon nanotubes, graphene nanoplatelets), modified activated carbons, and calcined kaolin are also discussed. Special attention is paid to composites with lower levels of zinc oxide.The volume provides an abundance of knowledge on the detailed characterization of these fillers and on the curing, mechanical, dynamic mechanical, and dielectric and microwave properties of the elastomeric composites. The book surveys the most recent research activities of the authors, which will make it a vital reference source for scientists in both the academic and industrial sectors, as well as for individuals who are interested in rubber materials. It will be very useful for students, especially PhD students, scientists, lecturers, and engineers working or doing research in the field of polymer materials science, elastomer-based composites and nanocomposites and their engineering applications in the production of microwave absorbers and electromagnetic waves shielding materials, materials for electronics devices and telecommunications."--Provided by publisher
*Free conversion of into popular formats such as PDF, DOCX, DOC, AZW, EPUB, and MOBI after payment.

Related Products