logo
Product categories

EbookNice.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link.  https://ebooknice.com/page/post?id=faq


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookNice Team

(Ebook) Beginning Partial Differential Equations, Second Edition by Peter V. O'Neil(auth.) ISBN 9780470133903, 9781118032350, 0470133902, 1118032357

  • SKU: EBN-4299734
Zoomable Image
$ 32 $ 40 (-20%)

Status:

Available

0.0

0 reviews
Instant download (eBook) Beginning Partial Differential Equations, Second Edition after payment.
Authors:Peter V. O'Neil(auth.)
Pages:484 pages.
Year:2008
Publisher:Wiley
Language:english
File Size:6.5 MB
Format:pdf
ISBNS:9780470133903, 9781118032350, 0470133902, 1118032357
Categories: Ebooks

Product desciption

(Ebook) Beginning Partial Differential Equations, Second Edition by Peter V. O'Neil(auth.) ISBN 9780470133903, 9781118032350, 0470133902, 1118032357

A rigorous, yet accessible, introduction to partial differential equations—updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addressing more specialized topics and applications. Maintaining the hallmarks of the previous edition, the book begins with first-order linear and quasi-linear PDEs and the role of characteristics in the existence and uniqueness of solutions. Canonical forms are discussed for the linear second-order equation, along with the Cauchy problem, existence and uniqueness of solutions, and characteristics as carriers of discontinuities in solutions. Fourier series, integrals, and transforms are followed by their rigorous application to wave and diffusion equations as well as to Dirichlet and Neumann problems. In addition, solutions are viewed through physical interpretations of PDEs. The book concludes with a transition to more advanced topics, including the proof of an existence theorem for the Dirichlet problem and an introduction to distributions. Additional features of the Second Edition include solutions by both general eigenfunction expansions and numerical methods. Explicit solutions of Burger's equation, the telegraph equation (with an asymptotic analysis of the solution), and Poisson's equation are provided. A historical sketch of the field of PDEs and an extensive section with solutions to selected problems are also included. Beginning Partial Differential Equations, Second Edition is an excellent book for advanced undergraduate- and beginning graduate-level courses in mathematics, science, and engineering.Content: Chapter 1 First?Order Equations (pages 1–22): Chapter 2 Linear Second?Order Equations (pages 23–58): Chapter 3 Elements of Fourier Analysis (pages 59–108): Chapter 4 The Wave Equation (pages 109–183): Chapter 5 The Heat Equation (pages 185–237): Chapter 6 Dirichlet and Neumann Problems (pages 239–326): Chapter 7 Existence Theorems (pages 327–349): Chapter 8 Additional Topics (pages 351–393): Chapter 9 End Materials (pages 395–472):
*Free conversion of into popular formats such as PDF, DOCX, DOC, AZW, EPUB, and MOBI after payment.

Related Products