logo
Product categories

EbookNice.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link.  https://ebooknice.com/page/post?id=faq


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookNice Team

(Ebook) Bayesian Analysis in Natural Language Processing by Shay Cohen ISBN 9781681735276, 168173527X

  • SKU: EBN-10437834
Zoomable Image
$ 32 $ 40 (-20%)

Status:

Available

5.0

39 reviews
Instant download (eBook) Bayesian Analysis in Natural Language Processing after payment.
Authors:Shay Cohen
Pages:345 pages.
Year:2019
Editon:2
Publisher:Morgan & Claypool
Language:english
File Size:5.09 MB
Format:pdf
ISBNS:9781681735276, 168173527X
Categories: Ebooks

Product desciption

(Ebook) Bayesian Analysis in Natural Language Processing by Shay Cohen ISBN 9781681735276, 168173527X

Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language. Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples. In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed “in-house” in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis.
*Free conversion of into popular formats such as PDF, DOCX, DOC, AZW, EPUB, and MOBI after payment.

Related Products